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Abstract
We give an expression, in terms of boundary spectral functions, for the spectral
asymmetry of the Euclidean Dirac operator in two dimensions, when its domain
is determined by local boundary conditions and the manifold is of product type.
As an application, we explicitly evaluate the asymmetry in the case of a finite-
length cylinder and check that the outcome is consistent with our general result.
Finally, we study the asymmetry in a disc, which is a non-product case, and
propose an interpretation.

PACS numbers: 02.30.Tb, 02.30.Sa
Mathematics Subject Classification: 35P05, 35J55

1. Introduction

Spectral functions are of interest both in quantum field theory and in mathematics (for a recent
review, see [1]). In particular, ζ -functions of elliptic boundary problems are known to provide
an elegant regularization method [2] for the evaluation of objects as one-loop effective actions
and Casimir energies, as discussed, for instance, in the reviews [3].

In the case of operators with a non-positive-definite principal symbol, another spectral
function has been studied, known as the η-function [4], which characterizes the spectral
asymmetry of the operator. This spectral function was originally introduced in [5], where an
index theorem for manifolds with boundary was derived. In fact, the η-function of the Dirac
operator, suitably restricted to the boundary, is proportional to the difference between the
anomaly and the index of the Dirac operator, acting on functions satisfying non-local Atiyah–
Patodi–Singer (APS) boundary conditions. Some examples of application were discussed in
[6, 7].

Such non-local boundary conditions were introduced mainly for mathematical reasons,
although several applications of this type of boundary value problems to physical systems
have emerged, ranging from one-loop quantum cosmology [8], fermions propagating in

0305-4470/02/449343+12$30.00 © 2002 IOP Publishing Ltd Printed in the UK 9343

http://stacks.iop.org/ja/35/9343


9344 C G Beneventano et al

external magnetic fields [9] or so-called S-branes, which are mapped into themselves under
T-duality [10]. So far, η-functions have found their most interesting physical applications
in the discussion of fermion number fractionization [11]: the fractional part of the vacuum
charge is proportional to η(0). The η-function also appears as a contribution to the phase of the
fermionic determinants and, thus, to effective actions [12]. Furthermore, both the index and
the η-invariant of the Dirac operator are related to scattering data via a generalization of the
well-known Levinson theorem [13]. A thorough discussion of the index, ζ - and η-functions
in terms of boundary spectral functions for APS boundary problems can be found in [14, 15].

Alternatively, one may consider the boundary value problem for the Dirac operator acting
on functions that satisfy local, bag-like, boundary conditions. These conditions are closely
related to those appearing in the effective models of quark confinement known as MIT bag
models [16], or their generalizations, the chiral bag models [17]. The physical motivation for
studying these local boundary conditions is thus clear.

In this paper, we will study the Euclidean Dirac operator in two dimensions, acting on
functions satisfying local bag boundary conditions [18, 19]. Such boundary conditions are
defined through the projector in equation (3). They contain a real parameter θ , which is to
be interpreted as an analytic continuation of the well-known θ -parameter in gauge theories.
Indeed, for θ �= 0, the effective actions for the Dirac fermions contain a CP-breaking term
proportional to θ and proportional to the instanton number [19]; for example

two dimensions �eff ∼ θ

∫
d2x F01 + · · ·

four dimensions �eff ∼ θ

∫
d4x εµναβFµνFαβ + · · · .

For θ �= 0 we will refer to the bag boundary conditions as chiral while, in the particular
case θ = 0, we will call them non-chiral or pure MIT conditions. In both cases, the Dirac
operator is self-adjoint. Moreover, in two dimensions, not only is the first-order boundary
value problem elliptic, but so also is the associated second-order problem.

One of the main characteristics of bag boundary conditions is that they lead to an
asymmetry in the non-zero spectrum. Thus, in this paper we will study the boundary
contribution to the spectral asymmetry for bag boundary conditions in two-dimensional
Euclidean space. The pure MIT case was studied, for any even dimension, in [20]. We
will compare our results to those in this reference whenever adequate.

Note that, as in any even dimension, there is no volume contribution to the asymmetry (for a
proof see, for instance, [4]; qualitatively, this is due to the existence of γ5, which anticommutes
with the Dirac operator). So, the boundary contribution is also the total asymmetry. In
section 3, the asymmetry will be expressed in terms of spectral functions of the boundary
operator A. Throughout our calculation in that section, we will assume the manifold to be of
product type near the boundary and A to be independent of the normal variable.

As an example of a product manifold we will evaluate, in section 4, the asymmetry in
a finite cylinder with twisted boundary conditions along the circle direction, imposing APS
boundary conditions on one end of the cylinder and chiral bag conditions on the other end.
The result will be shown to be consistent with our general prediction in section 3.

In section 5, we will compute the spectral asymmetry in the case of a disc (two-dimensional
bag), for chiral bag boundary conditions. Note this is a non-product case; however, we will
suggest that the outcome of this calculation might be understood from our general result in
section 3.

Finally, section 6 contains the generalization to the case in which certain gauge potentials
are present, as well as some comments concerning the extension of our results to higher
dimensions.
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2. The heat kernel in terms of boundary eigenvalues

In this section we rewrite the known heat kernel for the free Euclidean Dirac operator on the
semi-infinite cylinder subject to bag boundary conditions, such that the spectral resolution
with respect to the boundary operator becomes transparent. To this end, it is convenient to
choose a chiral representation for the Euclidean γ -matrices in two dimensions,

γ0 = σ1 γ1 = σ2 and γ5 = −iγ0γ1 = σ3. (1)

Then, the free Dirac operator takes the form

P = i(γ0∂0 + γ1∂1) =
(

0 ∂1 +A
−∂1 +A 0

)
(2)

where A is the boundary operator

A = i∂0

which will play an important role in what follows. The Euclidean ‘time’ coordinate 0 � x0 < β

is tangential to the boundary at x1 = 0. The ‘spatial’ variable x1 � 0 is normal to the boundary
and grows towards the interior of the semi-infinite cylinder. The projector defining the local
bag boundary condition

Bψ|x1=0 = 0

at the boundary x1 = 0 reads

B = 1

2
(1 − iγ5 eγ5θn/) = 1

2
(1 + iγ5 eγ5θγ1) = 1

2

(
1 eθ

e−θ 1

)
(3)

where nµ is the outward-oriented normal, nµ = (0,−1).
For convenience we introduce the variables ξµ = xµ − yµ and η = x1 + y1. Then, the

heat kernel of the associated second-order operator reads, in terms of the eigenvalues an of the
boundary operator A,

K(t, x, y) = 1

β
√

4πt

∑
n

eianξ0 e−a2
nt

{
e−ξ 2

1 /4t11 + e−η2/4tM

−N tanh θ e−η2/4t

[
1 −

√
4πt

sinh 2θ
an eun(η,t)

2
erfc[un(η, t)]

]}
(4)

where we introduced the abbreviation

un(η, t) = η√
4t

− an
√
t tanh θ

and the complementary error function,

erfc(x) = 2√
π

∫ ∞

x

dy e−y2
.

Moreover, 11 denotes the 2 × 2 identity matrix,

M =
(

eθ sinh θ −cosh θ
−cosh θ −e−θ sinh θ

)
and N =

(
eθ −1
−1 e−θ

)
sinh θ.

For finite temperature field theory, in which case the Dirac field is anti-periodic in x0 and hence
the eigenvalues of the boundary operator are an = 2π(n + 1/2)/β, the result (4) coincides
with the Fourier transform of equation (101) in [21].
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3. Boundary contribution to the spectral asymmetry from bag boundary conditions

As already commented, since the Euclidean spacetime is even dimensional, there is no bulk
contribution to the asymmetry. To obtain the boundary contribution, the eigenvalue problem
for the Dirac operator P should be investigated on a collar neighbourhood of the boundary.
Here, we consider instead the operator on the semi-infinite cylinder extending to x1 → ∞. As
is well known [20], since we are treating a self-adjoint problem, this yields the correct answer
for an invertible boundary operator A. We shall discuss the non-invertible case towards the
end of this section. Hence, for the moment, we assume an �= 0 for all n.

Denoting the real eigenvalues of the Dirac operator by λ, the relevant spectral function is

η(s, P ) =
∑
λ

signλ

|λ|s = ζ

(
s + 1

2
, P 2, P

)
= 1

�
(
s+1

2

) ∫ ∞

0
dt t

s−1
2 Tr

(
P e−tP 2)

. (5)

The Dirac trace can be computed with the help of

Tr(γ0,111) = Tr(γ1M) = Tr(γ1N) = 0 and

Tr(γ0M) = −2 cosh θ Tr(γ0N) = −2 sinh θ.

From (4) one obtains for the Dirac trace of the kernel needed in equation (5):

Tr
〈
x
∣∣P e−tP 2 ∣∣y〉 = cosh θ e−η2/4t

iβ
√
πt

Tr

(
∂

∂x0

∑
n

eianξ0 e−a2
nt

{
1 − tanh2 θ

×
[

1 − an
√

4πt

sin 2θ
eun(η,t)

2
erfc[un(η, t)]

]})
. (6)

After performing the derivative with respect to x0, setting xµ = yµ and integrating over the
tangential variable, one is left with the following integral over the normal variable x1 ≡ x:

Tr
(
P e−tP 2) =

∑
n

an e−a2
nt

∫ ∞

0
dx

{
1√
πt

+ an tanh θ eu
2
n(2x,t) erfc[un(2x, t)]

}
e−x2/t

cosh θ
(7)

where we took into account that for xµ = yµ we have

un(η, t) = un(2x, t) = x√
t

− an
√
t tanh θ x = x1.

Now, we may use the simple identity

−1

2

∂

∂x

[
e−x2/t+u2

n(2x,t) erfc[un(2x, t)]
] = e−x2/t

[
1√
πt

+ an tanh θ eu
2
n(2x,t) erfc[un(2x, t)]

]
to rewrite the relevant trace as follows:

Tr
(
P e−tP 2) = − 1

2 cosh θ

∑
n

an e−a2
nt/ cosh2 θ

∫ ∞

0
dx

∂

∂x
[e−2xan tanh θ erfc(u(2x, t))]

= 1

2

∑
n

an

cosh θ
e−a2

nt/ cosh2 θ erfc[−√
t tanh θan]. (8)

The asymmetry is obtained by inserting (8) into (5) and, hence, it is given by

η(s, P ) = 1

�
(
s+1
2

) ∑
n

an

2 cosh θ

∫ ∞

0
dt t

s−1
2 e−a2

nt/ cosh2 θ [1 − erf(−√
t tanh θan)]

where erf is the error function,

erf(x) = 1 − erfc(x) = 2√
π

∫ x

0
dy e−y2

.
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Finally, changing variables to τ = a2
nt
/

cosh2 θ , interchanging the order of the integrations
and integrating over τ one obtains the following rather explicit expression:

η(s, P ) = 1

2
coshs θ

∑
n

(
a2
n

)−s/2
[sign(an) + I (s, θ)]

= 1

2
coshs θ

[
η(s,A) + ζ

( s
2
, A2

)
I (s, θ)

]
(9)

where we have introduced the function

I (s, θ) = 2√
π

�
(
s
2 + 1

)
�
(
s
2 + 1

2

) ∫ sinh θ

0
dx(1 + x2)−1−s/2.

With πI (0, θ) = 2 arctan(sinh θ) we obtain

η(0, P ) = 1

2

{
η(0, A) +

2

π
ζ(0, A2) arctan(sinh θ)

}
. (10)

Now, the second term within the curly brackets can be seen to vanish, since the boundary is
a closed manifold of odd dimensionality. In fact, in our case, ζ(0, A2) = a1(A

2) = 0, where
a1(A

2) is a heat kernel coefficient in the notation of [4] (for details, see theorem 1.12.2 and
lemma 1.8.2 in this reference), and we are left with

η(0, P ) = 1
2η(0, A). (11)

As far as A is invertible, this is the main result of this section, relating the η-invariant of
the Dirac operator to the same invariant of the boundary operator. Note that the outcome
is the same irrespective of the value of θ , i.e. it holds for both pure MIT and chiral bag
conditions. The first case was treated before in [20]; our result coincides with the one given
in that reference (equation (4.16)), up to an overall factor 1/2. This discrepancy seems to be
due to an extra factor of 2 in equations (4.7) and (4.8) in that reference. This extra factor is
inconsistent with equation (4.10), and has seemingly propagated to theorem 4.4 in the same
paper.

Our result (11) changes sign when the normal to the boundary points in the opposite
direction, since then the non-diagonal entries in M and N change sign and, as a consequence,
so does the Dirac trace.

As already pointed out, (11) gives the whole spectral asymmetry when the boundary Dirac
operator γ0A is invertible. In fact, for such cases it was proved in [20] (see also [22]) that the
asymmetry splits, in the adiabatic (infinite volume) limit, into the volume contribution plus
the infinite cylinder one. Moreover, [23] shows that the spectral asymmetry is independent
of the size of the manifold when the boundary value problem is self-adjoint, as in our case.
This, together with the vanishing of the volume contribution in even dimensions, leads to the
previous conclusion.

Now, we study the more subtle case of a non-invertible boundary operator A. Then, as
can be seen from (7), an = 0 would give no extra contribution in the semi-infinite cylinder.
However, in this case, the trace (8) can differ in a substantial way from the corresponding one
in the collar neighbourhood. As explained in [22], both large t behaviours may be different,
thus giving extra contributions to the asymmetry in the collar. This difference in high t
behaviour is due to the presence of ‘small’ eigenvalues, vanishing as the inverse of the size of
the manifold in the adiabatic limit [24]. These extra contributions can be determined, modulo
integers, by using the arguments in [4, 23, 25]. To this end, consider the one-parameter family
of differential operators

Pα = P +
2π

β
αγ0 P0 = P.
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These operators share the same α-independent domain. They are invertible for α �= 0 and can
be made invertible for all α by subtracting the projector on the subspace of small eigenvalues
related to the zero modes at α = 0. This then yields a new family of operators P ′

α and one
obtains

η(0, Pα) = η(0, P ′
α)mod Z and

d

dα
η(0, Pα) = d

dα
η(0, P ′

α).

Then, differentiating with respect to α one finds

d

dα
η(0, P ′

α) = 1

�
(
s+1

2

) d

dα

∫ ∞

0
dt t

s−1
2 Tr

(
P ′
α e−tP ′

α
2)∣∣

s=0

= 1

�
(
s+1

2

) ∫ ∞

0
dt t

s−1
2 Tr

[
dP ′

α

dα

(
1 + 2t

d

dt

)
e−tP ′

α
2
]∣∣∣∣
s=0

= − 2πs

β�
(
s+1
2

) ∫ ∞

0
dt t

s−1
2 Tr

(
γ0 e−tP ′

α
2)

+
4π

β�
(
s+1

2

) Tr
(
t
s+1

2 γ0 e−tP ′
α

2
)∞

t=0

∣∣∣
s=0

(12)

where we performed a partial integration to arrive at the last equation. In addition, we used
dP ′

α/dα = 2π
β
γ0. Since P ′

α −Pα is an operator of finite range we may safely skip the prime in
the last line of the above formula. Finally, the very last term in equation (12) can be seen to
vanish, which gives, for the spectral flow (with almost the same calculation as the one starting
with equation (6), except that no derivative w.r.t x0 must be taken)

d

dα
η(0, P ′

α) = −π
β

Res|s=0

[
ζ

(
s + 1

2
, A2

)
+

2

π
η(s + 1, A) arctan(sinh θ)

]
. (13)

Now, the second term can be seen to vanish, since (again with the notation of [4]),√
π Res|s=0η(s + 1, A) = 2a0(A

2, A) = 0. Moreover,
√
π Res|s=0ζ

(
s+1

2 , A
2
)= 2a0(A

2)= β

π
.

Thus, one finally has for the spectral flow, irrespective of whether A is invertible or not

d

dα
η(0, Pα) = −1. (14)

So, at variance with the case treated in theorem 2.3 of [25], the spectral flow does not vanish
for bag boundary conditions. As a consequence, the contribution to the asymmetry coming
from boundary zero modes is different from an integer. This also seems to disagree with the
result in [20]. Unfortunately, we were not able to trace the origin of this discrepancy from
the results presented in that reference. However, we will see, in the next section, an explicit
example of how this works.

4. The asymmetry in a finite cylinder

Here, we consider the simple case of the free Dirac operator on a finite ‘cylinder’ and impose
twisted boundary conditions in the Euclidean time direction (x0 ranges from 0 to β), non-local
APS boundary conditions at x1 = 0 and local chiral bag boundary conditions at x1 = L.
(Note that twisting the boundary fibre is equivalent to introducing a constant A0 gauge field
in the Dirac operator.)

The eigenfunctions of the Dirac operator (2) can be expanded in eigenfunctions of the
boundary operator A = i∂0, satisfying twisted boundary conditions in the time-direction with
twist parameter α,ψ(x0 + α) = e2π iαψ(x0), as follows:

ψ =
∑
n

ψn(x1) eianx0 ψn =
(
fn
gn

)
(15)
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APS L

x0

x1

bag

Figure 1. The scenario in this section.

where the eigenvalues of the boundary operator read

an = 2π

β
(n + α) n ∈ Z.

For definiteness, we will consider 0 � α < 1 such that an � 0 is equivalent to n � 0 and
an < 0 to n < 0. A vanishing α corresponds to periodic boundary conditions, and α = 1/2 to
anti-periodic (finite temperature) boundary conditions. The mode-functions in (15) fulfil the
simple differential equations

g′
n − angn = λfn and −f ′

n − anfn = λgn.

At x1 = 0, the APS boundary conditions require

an � 0 fn(0) = 0 and an < 0 gn(0) = 0.

Hence, the mode-functions have the form

ψn�0 ∼
(

λ sinhµx1

−an sinhµx1 − µ coshµx1

)
ψn<0 ∼

(−an sinhµx1 + µ coshµx1

λ sinhµx1

)

with µ = √
a2
n − λ2. On these we must impose chiral bag boundary conditions at x1 = L.

The projector defining these conditions reads

B = 1

2
(1 − iγ5 eγ5θn/) = 1

2

(
1 −eθ

−e−θ 1

)
and yields the following transcendental equations:

(λ e−θ + an) sinhLµn(λ) + µn(λ) coshLµn(λ) = 0 for n � 0
(λ eθ + an) sinhLµn(λ)− µn(λ) coshLµn(λ) = 0 for n < 0

(16)

for the eigenvaluesλ(α) of the Dirac operator on the finite cylinder with APS and bag boundary
conditions. With the evident relation

a−n−1(α) = −an(1 − α)

one shows that the assignment

(n, α, θ, λ) −→ (−n− 1, 1 − α,−θ,−λ) (17)

maps one of the lines of equation (16) into the other. Hence, it suffices to consider the case
n � 0. The contribution of the negative n to spectral functions is taken into account by
exploiting the symmetry (17).

Let us first study the asymmetry for α �= 0, thus excluding the case of a non-invertibleA.
From the well-known formula∑

λ

λ−s = 1

2π i

∮
�

dz

zs

f ′(z)
f (z)

(18)
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with f defined by the left-hand side in the first line of equation (16), one obtains

η(s, P ) = 1

2π i

∞∑
n=0

∫
�

dz

zs

d

dz
log

(an + z e−θ ) sinhLµn(z) + µn(z) coshLµn(z)

(an − z e−θ ) sinhLµn(z) + µn(z) coshLµn(z)

− (α → 1 − α, θ → −θ) (19)

with µn(z) =
√
an − z2. The curve � comes from ∞ + iε to a small semi-circle avoiding the

origin and goes back to +∞ − iε, surrounding the real positive axis anti-clockwise.

�(z)

�(z)Γ

zeros of f(z)

Figure 2. The integration curve.

Now, the contour can be opened to the imaginary axis, and the circle around the origin
can be shrunk, since the integrand vanishes at z = 0. After doing so, one gets

η(s, P ) = 1

iπ

∞∑
n=0

∫ ∞

0

dt

t s
cos

(πs
2

) d

dt
log

(an − it e−θ ) tanhLµn(it) + µn(it)

(an + it e−θ ) tanhLµn(it) + µn(it)

− (α → 1 − α, θ → −θ).
Now, changing variables according to t = anu, one obtains

η(s, P ) = 1

iπ

∞∑
n=0

cos
(πs

2

)
a−s
n

∫ ∞

0

du

us

d

du
log

(1 − iu e−θ ) tanh
[
Lan

√
1 + u2

]
+

√
1 + u2

(1 + iu e−θ ) tanh
[
Lan

√
1 + u2

]
+

√
1 + u2

− (α → 1 − α, θ → −θ).
The whole expression can be evaluated at s = 0, and one obtains the following simple result
for the spectral asymmetry

η(0, P ) = − 1
2 [ζH (0, α)− ζH (0, 1 − α)] = α − 1

2 (20)

where ζH is the Hurwitz ζ -function. In particular, the asymmetry vanishes in the finite
temperature case

(
α = 1

2

)
.

As shown in the previous section (equation (11)), bag boundary conditions give, in the
absence of boundary zero modes, a contribution − 1

2η(0, A) to the asymmetry. The minus
sign is due to the fact that, at x1 = L, the external normal is (0, 1). APS boundary conditions
give no contribution at all and, as a consequence, the total asymmetry is due to bag boundary
conditions. In this case, it can be easily computed in terms of Hurwitz zeta functions

−1

2
η(0, A) = −1

2

(
2π

β

)−s [∑
n�0

(n + α)−s −
∑
n>0

(n− α)−s )
]∣∣∣∣
s=0

which reduce to equation (20).
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Let us finally study the periodic case, where a boundary zero mode does exist. The total
asymmetry can be obtained as follows. From the symmetry (17) it follows, that

(n, θ, λ) −→ (−n,−θ,−λ) n �= 0

is a symmetry of equations (16). The contribution from these modes can be evaluated as in
the invertible case and is found to be 1

2 − 2
π

arctan eθ . Regarding n = 0, the contribution
coming from these modes can be computed directly in terms of Hurwitz zeta functions, and
it gives −1 + 2

π
arctan eθ . So, the sum of both contributions gives for the total asymmetry

η(0, P ) = − 1
2 .

This result is again in complete agreement with our general result in the previous section.
In fact, APS boundary conditions do not contribute to the asymmetry mod Z. The contribution
of the local boundary conditions mod Z can be obtained from the spectral flow in equation
(12). Hence,

η(0, P0)− η(0, P1/2) = η(0, P0) = − 1
2 (mod Z).

It is interesting to note that in all cases, bag boundary conditions transform the would-be
contribution to the index due to APS boundary conditions into a spectral asymmetry. In fact,
the problem can be easily seen to present no zero modes.

5. Spectral asymmetry in the disc

In this section, we will study the spectral asymmetry for the free Dirac operator in a disc,
subject to bag boundary conditions at radius R and with arbitrary θ . Note that we are dealing
with a non-product case. However, we will suggest a plausible interpretation in terms of our
results in section 3. The Dirac operator on the disc, subject to non-local APS conditions, has
been carefully analysed in [7, 13]. In particular, the connection to the scattering theory of P 2

has been clarified in [13].
We choose the same chiral representation as in section 2 and take polar coordinates (r, ϕ),

such that the free Dirac operator takes the form

P = i

(
γr∂r + γϕ

∂ϕ

r

)
with γr =

(
0 e−iϕ

eiϕ 0

)
γϕ =

(
0 −ie−iϕ

ieiϕ 0

)
. (21)

Here, the angle ϕ is the boundary variable, and 0 � r � R is the outward-growing normal
one. With n/ = γr the projector defining bag boundary conditions at r = R reads

B = 1

2
(1 − iγ5 eγ5θ γr) = 1

2

(
1 −ieθ−iϕ

ie−θ+iϕ 1

)
(22)

and the boundary operator at r = R is

A = i

R
∂ϕ.

We expand the eigenfunctions of the Dirac operator P in eigenfunctions of the total angular
momentum operator

J = 1

i

∂

∂ϕ
+

1

2
σ3

which commutes with both P and B,

ψ =
∞∑

n=−∞
cn

(
fn(r) einϕ

gn(r) ei(n+1)ϕ

)
. (23)
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The radial mode-functions are determined by the differential equation Pψ = λψ , together
with the bag boundary conditions. The differential equation implies

fn = Jn(|λ|r) and gn = −i sign(λ)Jn+1(|λ|r)
where Jn is the Bessel function of integer order n. The boundary conditions with boundary
operator (22) yield

Jn(|λ|R)− eθ sign(λ)Jn+1(|λ|R) = 0 n ∈ Z. (24)

Here it is convenient to consider these conditions for positive and negative eigenvalues λ
separately. With the help of J−n(x) = (−)nJn(x) they can be written as follows:

λ > 0 Jn(|λ|R)− eθJn+1(|λ|R) = Jn(|λ|R) + e−θ Jn+1(|λ|R) = 0

λ < 0 Jn(|λ|R) + eθJn+1(|λ|R) = Jn(|λ|R)− e−θ Jn+1(|λ|R) = 0

where n = 0, 1, 2, . . .. Note that these conditions are left invariant by the replacement

(λ, θ) −→ (−λ,−θ).
Hence, with the help of (18) the spectral asymmetry is given by the following contour integral
in the complex plane:

η(s, P ) = 1

2π i

∞∑
n=0

∫
�

dz z−s
d

dz
log

(
Jn(zR)− eθJn+1(zR)

Jn(zR) + eθJn+1(zR)

)
− (θ → −θ)

where the contour � is the same as that in (19). Again we deform the path of integration such
that we integrate along the imaginary axis. After doing that, and using the definition of the
modified Bessel functions,

Jn(ix) = inIn(x) and Jn(−ix) = (−i)nIn(x)

we obtain

η(s, P ) = 1

iπ
cos

πs

2

∞∑
n=0

∫ ∞

0
dt t−s

d

dt
log

In(tR) + ieθ In+1(tR)

In(tR) − ieθ In+1(tR)
− (θ → −θ). (25)

It is convenient to separate the contribution from n = 0, which can be evaluated at s = 0
without problems. The corresponding integral gives

ηn=0(0, P ) = 1

iπ
log

I0(tR) + ieθ I1(tR)

I0(tR)− ieθ I1(tR)

∣∣∣∣
∞

0

− (θ → −θ)

= 1

iπ
log

1 + ieθ

1 − ieθ
− (θ → −θ) = 4

π

[π
4

− arctan e−θ
]
. (26)

For the remaining subspaces, n �= 0, we add and subtract the first term in the Debye expansion
of the modified Bessel functions.

To this end, we change variables according to t = nu/R, so that

ηn �=0(s, P ) = 1

iπ
cos

πs

2

∞∑
n=1

( n
R

)−s ∫ ∞

0
du u−s d

du
log

In(nu) + ieθ In+1(nu)

In(nu)− ieθ In+1(nu)
− (θ → −θ).

(27)

The first term in the Debye expansion of the argument of the logarithm gives

log
In(nu) + ieθ In+1(nu)

In(nu)− ieθ In+1(nu)
∼ logF(u, θ) F (u, θ) = −

√
1 + u2 − 1 − iu e−θ

√
1 + u2 − 1 + iu e−θ .
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When this is added and subtracted in equation (27), the subtracted part can be seen to vanish
at s = 0, since the integrand cancels at both 0 and ∞. Thus, we are left with

ηn �=0(s, P ) = 1

iπ
cos

πs

2

∞∑
n=1

( n
R

)−s ∫ ∞

0
du u−s d

du
logF(u, θ)− (θ → −θ)

which yields a finite expression for s = 0,

ηn �=0(0, P ) = 1

iπ
ζR(0) logF(u, θ)

∣∣∣∞
0

− (θ → −θ)
where ζR is the Riemann zeta function. Inserting the values of F and ζR(0) yields

ηn �=0(0, P ) = 2

π

[
arctan e−θ − π

4

]
. (28)

When added to the contribution in equation (26), this gives for the total asymmetry

η(0, P ) = 2

π

[
arctan e|θ | − π

4

]
. (29)

This is precisely the result predicted by equation (10) when the eigenvalues of A are of the
form an = n/R, with n ∈ Z. In fact, in this case, η(0, A) = 0 and ζ ′(0, A2) = −1 (the
latter is evaluated in the subspace orthogonal to the zero mode). This can be interpreted as
follows: The operator P in equation (21) is not of the form (2). However, it reduces to such a
form (although with an r-dependentA) after choosing the eigenfunctions as in (23). Now, due
to the different dependence on the tangent variable of both components in the spinors, γ0A

never goes through zero modes and the calculation in the infinite cylinder seemingly gives the
correct value for the asymmetry, even though this is a non-product example.

6. Comments

As already pointed out, our result in equation (11) gives the answer also in the presence of a
constantA0 gauge field, which can always be eliminated with the only consequence of twisting
the boundary fibre. It can also be shown to hold for a gauge field such that A0 = A0(x0)

(independent of the normal variable) and A1 = 0 for, then, a gauge transformation can be
performed of the form ψ ′(x0, x1) = ei

∫ x0
0 A0(x) dxψ(x0, x1), again leading to just a twist in the

boundary fibre.
Finally, our result should, in principle, extend to higher even dimensions. It is clear that

this is so in the case of pure MIT bag boundary conditions (θ = 0). For chiral bag boundary
conditions, this is not so clear due to the presence of oblique boundary conditions [26] (and
possible lack of ellipticity) in the associated second-order problem [1, 27, 28].
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